Minggu, 16 November 2014

Materi 2: Matriks

Dalam matematika, matriks adalah kumpulan bilangan, simbol, atau ekspresi, berbentuk persegi panjang yang disusun menurut baris dan kolom. Bilangan-bilangan yang terdapat di suatu matriks disebut dengan elemen atau anggota matriks. Contoh matriks dengan 2 baris dan 3 kolom yaitu
\begin{bmatrix}1 & 9 & -13 \\20 & 5 & -6 \end{bmatrix}.
Pemanfaatan matriks misalnya dalam menemukan solusi sistem persamaan linear. Penerapan lainnya adalah dalam transformasi linear, yaitu bentuk umum dari fungsi linear, misalnya rotasi dalam 3 dimensi.
Matriks seperti halnya variabel biasa dapat dimanipulasi, seperti dikalikan, dijumlah, dikurangkan dan didekomposisikan. Dengan representasi matriks, perhitungan dapat dilakukan dengan lebih terstruktur.

Operasi dasar

Penjumlahan dan pengurangan matriks

Penjumlahan dan pengurangan matriks hanya dapat dilakukan apabila kedua matriks memiliki ukuran atau tipe yang sama. Elemen-elemen yang dijumlahkan atau dikurangi adalah elemen yang posisi atau letaknya sama.

\begin{bmatrix}
{3} & {4} \\
{6} & {5} \\

\end{bmatrix}
\!

\begin{bmatrix}
(a_{11} \pm b_{11}) & (a_{12} \pm b_{12}) & (a_{13} \pm b_{13}) \\
(a_{21} \pm b_{21}) & (a_{22} \pm b_{22}) & (a_{23} \pm b_{23}) \\
\end{bmatrix}
=
\begin{bmatrix}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
\end{bmatrix}
\!

Perkalian skalar

Matriks dapat dikalikan dengan sebuah skalar.
Contoh perhitungan :

5 \cdot
  \begin{pmatrix}
    1 & -3 & 2 \\
    1 &  2 & 7
  \end{pmatrix}
  =
  \begin{pmatrix}
   5 \cdot 1 & 5 \cdot (-3) & 5 \cdot 2 \\
   5 \cdot 1 & 5 \cdot   2  & 5 \cdot 7
  \end{pmatrix}
  =
  \begin{pmatrix}
    5 & -15 & 10 \\
    5 & 10  & 35
  \end{pmatrix}

Perkalian Matriks

Matriks dapat dikalikan, dengan cara tiap baris dikalikan dengan tiap kolom, lalu dijumlahkan pada baris yang sama.
Contoh perhitungan :

  \begin{pmatrix}
    1 & 2 & 3 \\
    4 & 5 & 6 \\
  \end{pmatrix}
  \cdot
  \begin{pmatrix}
    6 & -1 \\
    3 & 2 \\
    0 & -3
  \end{pmatrix}
  =
  \begin{pmatrix}
     1 \cdot 6  +  2 \cdot 3  +  3 \cdot 0 &
     1 \cdot (-1) +  2 \cdot 2 +  3 \cdot (-3) \\
     4 \cdot 6  +  5 \cdot 3  +  6 \cdot 0 &
     4 \cdot (-1) +  5 \cdot 2 +  6 \cdot (-3) \\
  \end{pmatrix}
  =
  \begin{pmatrix}
    12 & -6 \\
    39 & -12
  \end{pmatrix}

Tidak ada komentar:

Posting Komentar